Java并发之Future

Future 是 Java 中的一个接口,用于表示异步计算的结果。它可以在多线程环境下执行异步操作,并在需要时获取其结果。在本文中,我们将详细介绍 Future 任务机制和 FutureTask 的实现原理及使用方法。

Future 接口

Future 可以基于 Callable 或 Runnable创建。表示异步任务的返回值。

classDiagram
    class Future{
        + cancel(boolean mayInterruptIfRunning) boolean
        + isCancelled() boolean
        + isDone() boolean
        + get() ~V~ 
        + get(long timeout, TimeUnit unit) ~V~
    }
    <<interface>> Future

Future的使用时序图如下:

sequenceDiagram
    Client-)Future: [Async] Produce Future
    Future-)Client: [Async] return Future
    Client->>+Future: [Sync] get Value
    Future->>-Client: [Sync] return Value Or Except

Callable转 Future的源码追踪

首先我们从任务提交开始,在AbstractExecutorService中的源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}

可以看到Callable任务被包装成了RunnableFuture对象,通过了线程池的execute方法提交任务并且立刻返回对象本身,而线程池是接受Runnable,必然RunnableFuture继承了Runnable。

真正的实现FutureTask

FutureTask被生产者和消费者共享,生产者运行run方法计算结果,消费者通过get方法获取结果。

FutureTask状态

1
2
3
4
5
6
7
8
9
//FutureTask类中用来保存状态的变量,下面常量就是具体的状态表示
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;

状态流转如下:

flowchart TD
    A[NEW 初始状态] --> B{操作类型}
    
    B --> C[调用 run 方法]
    B --> D[调用 cancel false]
    B --> E[调用 cancel true]
    
    C --> F[COMPLETING 正在完成]
    D --> G[CANCELLED 已取消]
    E --> H[INTERRUPTING 正在中断]
    
    F --> I{执行结果}
    I --> J[NORMAL 正常完成]
    I --> K[EXCEPTIONAL 异常完成]
    
    H --> L[INTERRUPTED 已中断]
    
    J --> M[最终状态]
    K --> M
    G --> M
    L --> M

run

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public void run() {
// 状态不为new 或者 执行线程不为空,结束 run
// CAS 更新
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
// call 执行成功,设置结果
set(result);
}
} finally {
// runner must be non-null until state is settled to prevent concurrent calls to run()
// CAS的条件
runner = null;
// state must be re-read after nulling runner to prevent leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

set

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
protected void set(V v) {
// cas 状态更新 new -> completing
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
// future的结果
outcome = v;
// cas 状态更新 completing -> normal
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
// 唤醒阻塞在get() 方法上面的线程
finishCompletion();
}
}
protected void setException(Throwable t) {
// 如果抛出异常,设置到当前任务的执行状态为正在运行
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
// 将异常值赋值给outcome
outcome = t;
// 将当前线程的最终状态设置为执行异常
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
// 完成任务之后,做清理,详细源码分析,参考: 5.1.3、 finishCompletion()
finishCompletion();
}
}

runAndReset

这个方法同run方法比较的区别是call方法执行后除了发生异常不设置结果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
protected boolean runAndReset() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable<V> c = callable;
if (c != null && s == NEW) {
try {
c.call(); // don't set result
ran = true;
} catch (Throwable ex) {
setException(ex);
}
}
} finally {
runner = null;
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
return ran && s == NEW;
}

get

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public V get() throws InterruptedException, ExecutionException {
int s = state;
// 未完成,阻塞等待
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}

awaitDone内部是轮询判断任务的状态。

  • 当执行的线程被中断时,调用removeWaiter移除等待节点WaitNode,抛出中断异常
  • 当状态为已经完成,直接返回
  • 当状态为完成中,通过Thread.yield()让出CPU时间
  • 如果当前线程还没有创建WaitNode等待节点保存到等待队列里面去,则新建一个等待节点,插入到等待链表,表明当前线程也准备进入等待该任务完成的队列中去。
  • 最后是进入阻塞的动作,通过LockSupport.park,如果设置了超时的时间,则将时间作为参数传递到park中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// ***********************************************************************************
private int awaitDone(boolean timed, long nanos) throws InterruptedException {
// 是否有时间限制
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}

int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
// 下面的情况 s == new
else if (q == null)
q = new WaitNode();
else if (!queued)
// 将当前线程加入等待队列
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
// 挂起
LockSupport.parkNanos(this, nanos);
}
else
// 挂起
LockSupport.park(this);
}
}
// =========================================================================
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() {
thread = Thread.currentThread();
}
}

cancel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// 终止任务
public boolean cancel(boolean mayInterruptIfRunning) {
// 状态不为 new 或者修改状态失败,cas
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner; // runner -- 执行callable 的线程
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
//将阻塞在等待这个任务完成的线程唤醒,具体操作是LockSupport.unpark(t)
finishCompletion();
}
return true;
}
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}

注意 Future 的 cancel 并不一定能真正的 cancel。可以看到 future 是通过线程的interrupt方法去终止执行的,如果在 Runnable 或 Callable中没有响应interrupt异常,那么 cancel 是不生效的。

其它方法

FutureTask 还实现了其它一些方法:

1
2
3
4
5
6
7
8
// 判断是否终止任务
public boolean isCancelled() {
return state >= CANCELLED;
}
// 判断任务是否完成
public boolean isDone() {
return state != NEW;
}

ListenableFuture

由于 Future 的 get 方法是阻塞方法,实际使用时还是无法实现异步编程,于是就有了 ListenableFuture。由于ListenableFuture不是 JDK 提供的能力,很多项目都自己实现了(Spring,ElasticSearch,Guava)。接下来主要介绍使用最多的 Guava 中的 ListenableFuture。